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transducers designed by these methods
probably have very high efficiency-to-length
ratios, but mathematical proof of this still is

lacking.

It is the purpose of this communication

to suggest that the weighting functions are

not as arbitrary as they first appear. An
additional relationship is imposed by the

Kinetic Power Theorem. a
In the notation of Solymar and Eagles-

field,’

#m (% Y, z) = gl (z’)h~ + gz(z)im~ (1)

is a gradually-varying eigenfunction that

characterizes signal propagation on the mth
transmission line of the tapered transducer.
Weighting functions g,(z) and gj(z) cause

I+% to vary from a value of $m4 (the eigen-
function of the input mode) at z =0, to a

value of $~B (the eigenfunction of the output

mode) at z cL. When Vm is constructed in
this way, a waveguide cross-sectional

boundary can be derived from the orthog-
onal trajectories of the equipotential con-
tours, as by Solymar and Eaglesfield,l or
from the normals to the E-field vectors, as by
Yt’olfert. z Since the E-field vectors are

proportional to the gradients of +m, the two

derivations yield the same results. The
problem is to find the functions g,(z) and

gz(z) that optimize the design. This is an
extremely complicated mathematical prob-
lem for which only empirical approaches
have been suggested thus far.

To put the problem in perspective, one
may write the following equations relating
+~, the scaler magnitude of the Hertzian
vector potential, and the field components of
a TE-mode propagating on the mth trans-
mission line.

HCm = j/3~V&&%% (2)

Eim = jcop~k X Htm (3)

H.m = k.~~.e–i~m’ (4)

where & and k,~ are the propagation and
cutoff constants, respectively, of the line,
and k is a unit vector on the z axis. It is

assumed that pm and k,m are either constant,
or vary sufficiently slowly with z, that
hybrid modes are not excited. Actually, this

assumption is implied by the separation of
variables in ( 1).

A complex Poynting vector S~ for the
vzth line can be formed from (2) and (3):

S. = Et. X Ht.*

= @#O&n(k X Vsk) X ‘i7&n. (5)

Expanding, and integrating over a wave-

guide cross section S(Z), gives the power
flowing in the line

~ = WMim2
. s— ~(a)h2da

2C
(6)

where f’= 377 Q, and c is the velocit y of light.
If mks units are used, +~ is expressed in
ampere-meters to yield P in watts.

Although & and k,m can be assumed to

be invariant from one end of the transducer
to the other (pn~ = f3~B, k.m~ = kcmB) in gen-

eral, by the nature of its construction, the
bounded area .S will be a slowly-varying

~ The Kinetic Power Theorem states that any 10SS
in real kinetic power must equal the Power delivered
externally. It implies a conservation of power flow
through a Iossless, reflectionlwss transducer.

function of z. Nevertheless, for this lossless,
reflectionless transducer, the Kinetic Power

Theorem requires that

2C dP
— —
w@mkcm2 dZ

=0=$ j-[dz s [z,
g, (z)tm~ + g2(z)VmB]’da. (7)

Eq. 7 provides a relationship between

gl(z) and gz(z) that depends on the behavior
of the boundary. Unfortunately, the equa-
tion cannot be integrated without first solv-
ing the boundary-value problem, but when

the boundary has been derived by the
graphical methods discussed in the refer-

ences, a numerical integration can be

carried out to test the validity of the func-
tions. In view of the slowly-varying nature

of the cross section, and the fact that gl(0)

and gz (L) are readily adj usted to equalize the

powers in waveguides A and B, it probably
is sufficient to carry out the integration at

one intermediate cross section, such as at
z=L/2.
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On the Focused Fabry-Perot

Resonator in Plasma Diagnostics

In a recent paper, Primich and Hayamil
discussed the application of a Fabry-Perot
resonator to plasma diagnostics. In par-
ticular, they studied plasma densities that
are uniform in space and that have a plasma
frequency much less than the operating fre-
quency of the microwave system. They also
restrict themselves to plasmas that are
collisionless.

The purpose of this communication is to
study the use of a Fabry-Perot resonator in
diagnostics of a low density but nonuniform
plasma and also to consider the plasma to
have collisions. Such a problem would arise
in determining the plasma parameters in the
wake of a projectile or in various low density
plasma confinement devices.

Consider the resonator shown in Fig. 1
with a plasma slab inserted in it. One can

consider plane wavesa,? to be propagating in
the resonator, hence the plasma slab may be
considered as a dielectric medium of dielec-
tric constant 6P1.

[ 1.,1. .O I.-!L (1)
C@— j“uv
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Fig. l—Fabry-Perot plasma diagnostic device.

where Wpz=nez/nzcD is the plasma frequency
and v is the collision frequency. For v<<o,

(1) becomes

Consider now the Fabry-Perot cavity to

be resonated in the absence of any plasma
medium. Finite losses are present resulting
from the reflecting end plates and diffraction,

hence the complex resonant frequency is ex-

pressible as

““=”++*] (3)

where coo is the natural resonant frequency
and Qo is the Q of the empty cavity. Intro-
duction of the plasma slab will cause the
resonant frequency to shift by an amount

&; hence the new complex resonant fre-
quency may be written as

As the Q’s of the Fabry-Perot cavity are very

high, one obtains

The fields before and after the introduc-

tion of the plasma slab will be relatively un-
changed as epl = c“, hence the use of the

perturbational conceptl is valid which yields

Ql – fl~

where in general ~, p, and c are complex. At
resonance, the electric and magnetic energies
are equal and the plasma does not alter the
permeability, hence (6), using (2) and (5)
becomes

““ILL[2W51 IEol’dv——— .
Zfjf IG]21W

1—— 1:++-[~-z (7)

t R. F. Barrington, ‘[Time-Harmonic Electro-
magnetic FieIds, ” McGraw-Hill Book Co., Inc., New
York, N. Y., pp. 317–380; 1961.
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Equating the real and the imaginary
parts of (7) results in

w .LLLv~ IEO[’LW

x-= (8)

JJJy’dv

and

Qo – QI
JJ-j-v ~ IL?OIW

QOQI =
. (9)

J-J-J-VIE(%W

Eqs. (8) and (9) are the most general re-
sults as they allow for a density variation,
hence also a collision frequency variation,

both in the transverse and in the longitudinal

directions. One could now perform these in-

tegrations using an assumed spatial distribu-
tion in both the transverse and longitudinal

directions,

As an example, consider a uniform den-
sity plasma slab of infinite cross section
placed in the resonator. One obtains upon
integrating (8) and (9)

2Aj AL WP’
—.— —

fo L rqz
(lo)

Qo – Q, AL U=zv
— ._— —

QoQ, L W03 “
(11)

Using the measured change in resonant
frequency, ( 10) may now be solved for the

number density. Using the measured change
in the cavity Q, (11) will yield the collision

frequency. Eq. (10) is identical to (8) of
Primich and Hayami with AN replaced by

—C022/2C02,which is shown later in their text.
Experimental comparison with Lan.gmuir

probe measurements made in a toroidal
octupole plasma confinement device6 verify

the abo~-e theory. At 10 Gc the resonator
measured a number density of 5 X 10g

el/cm8 as also did the probe.

The parameters A~ and ~0 can be meas-

ured to a greater precision using a dual

modec cavity. The ratio Af/fo has been
measured as 3 X 10–s at 35 Gc, hence the

diagnostic capability in this frequency
range would be to measure number densities
from 10s el/cm3 to 1014 el/cm3.

The collision frequency relation (9) could
alternatively be derived by considering the
transmission line analog of a resonant cavity,
solving for the attenuation constant which
would depend on the collision frequency
of such a line, relating it to the Q’s of the

filled and unfilled cavities, and finally solving

for the collision frequency.
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Step-Twist Diode Switch

Two X-band diode switches have been
combined with a step-twist waveguide sec-
tion to form a very compact broad-band

step-twist diode switch.

The device shown in Fig. 1 can replace

a step twist in a system when it is necessary

to add a switch to the system.

Fig. l—Step-twist diode switch.
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Fig. 3—Frequency dependence of the isolation and
insertion loss of the step-twist diode switch.
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The step twist consists of equal length

equiangrrlar twisted sections cut quite in-

expensively with a 0.400 inch diameter mill.
The VSWR of the step twist alone is shown

in Fig, 2.

Dielectric Resonators for

Microwave Applications
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Fig. 2—Step-twist characteristics.

The diode switch consists of two 1N263
diodes centered in each step. The switching
voltage is delivered to the diodes through
modified B N C connectors. The isolation of

two diode switches is a maximum when they
are about a quarter wavelength apart. These

diodes are a quarter wavelength apart at
10.2 Gc but a capacitive step separates them,

lowering the frequency slightly. From Fig.
3 it can be seen that the isolation is greater
than 40 db from 8.4 Gc to 10.4 Gc peaking
at 9.9 Gc. The insertion loss is less than 3 db
from 9.2 Gc to 10.4 Gc. Although the diodes
used are limited to switching powers below
50 mw, any of the wide selection of higher
power X-band diode switches could be used
in this structure,
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The purpose of this communication is to
report certain test results recently obtained
with resonators made of single crystal rutile.
Since rutile has a very high dielectric con-
stant and a very low loss factor, microwave

resonators made of rut ile have several

desirable characteristics. Com,pared to

metallic resonators it is possible to reduce
the size of the rutile resonator, which is

especially usefrd at lower microwave fre-

quencies. The Q factor of rutile resonators is
very high and at room temperature may be
of the order of several thousand, while at
liquid helium temperature it may even reach
105. It can be shov,n that thf: ratio of electric

and magnetic field strengths of dielectric
cavity to metallic cavity is proportional to

(E) ’14 and (E)’)’, respectively. Therefore,
with the same availabIe power, an increase
in field intensity can be obtained. Further-

more, these fields are not confined to the
inside of the rutile resoua tor but extend

beyond the dielectric surface into free space.
Because of these characteristics rutile reso-

nators are finding usef u 1 applications in
traveling-wave masers, in harmonic gen-
erators (in conjunction with varactor di-

odes), in novel RF Hall-effect-devices, and
in experiments with parametric. supercon-
ducting devices.
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