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transducers designed by these methods
probably have very high efficiency-to-length
ratios, but mathematical proof of this still is
lacking.

It is the purpose of this communication
to suggest that the weighting functions are
not as arbitrary as they first appear. An
additional relationship is imposed by the
Kinetic Power Theorem.3

In the notation of Solymar and Eagles-
field,

Yn(x, ¥, 2) = 21@¥nt + 2@ (1)

is a gradually-varying eigenfunction that
characterizes signal propagation on the mth
transmission line of the tapered transducer.
Weighting functions gi(z) and g:(z) cause
Y to vary from a value of ¥4 (the eigen-
function of the input mode) at z=0, to a
value of ¥, (the eigenfunction of the output
mode) at z=L. When y,, is constructed in
this way, a waveguide cross-sectional
boundary can be derived from the orthog-
onal trajectories of the equipotential con-
tours, as by Solymar and Eaglesfield, or
from the normals to the E-field vectors, asby
Wolfert.? Since the E-field vectors are
proportional to the gradients of ¥, the two
derivations yield the same results. The
problem is to find the functions gi(z) and
g:(2) that optimize the design. This is an
extremely complicated mathematical prob-
lem for which only empirical approaches
have been suggested thus far.

To put the problem in perspective, one
may write the following equations relating
¥m, the scaler magnitude of the Hertzian
vector potential, and the field components of
a TE-mode propagating on the mth trans-
mission line.

Him = BV thme 2
E;, = jowuck X Him ©)]
Hum = Fon®me—im @

where 8, and k.. are the propagation and
cutoff constants, respectively, of the line,
and k is a unit vector on the z axis. It is
assumed that B, and k., are either constant,
or vary sufficiently slowly with z that
hybrid modes are not excited. Actually, this
assumption is implied by the separation of
variables in (1).

A complex Poynting vector S,, for the
mth line can be formed from (2) and (3):

Sm bt Etm X Htm*
= wuoBm(k X Volm) X Vibm. )]

Expanding, and integrating over a wave-
guide cross section S(z), gives the power
flowing in the line

] ﬁmkcmz

P =
2 82

Ym2da 6)
where § =377 @, and c is the velocity of light,
If mks units are used, ¥ is expressed in
ampere-meters to yield P in watts.
Although B, and k. can be assumed to
be invariant from one end of the transducer
to the other (8n4=3,5, km4=Fkm5B) in gen-
eral, by the nature of its construction, the
bounded area S will be a slowly-varying

3 The Kinetic Power Theorem states that any loss
in real kinetic power must equal the power delivered
externally. It implies a conservation of power flow
through a lossless, reflectionless transducet.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

function of z. Nevertheless, for this lossless,
reflectionless transducer, the Kinetic Power
Theorem requires that

2¢ dP
w{Bmken® dz
d
—0==- f 61 (Wt + ga(a)m®)ida. (7)
dzJ s

Eq. 7 provides a relationship between
g1(2) and g2(z) that depends on the behavior
of the boundary. Unfortunately, the equa-
tion cannot be integrated without first solv-
ing the boundary-value problem, but when
the boundary has been derived by the
graphical methods discussed in the refer-
ences, a numerical integration can be
carried out to test the validity of the func-
tions, In view of the slowly-varying nature
of the cross section, and the fact that g:(0)
and g»(L) are readily adjusted to equalize the
powers in waveguides 4 and B, it probably
is sufficient to carry out the integration at
one intermediate cross section, such as at
z=L/2.
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On the Focused Fabry-Perot
Resonator in Plasma Diagnostics

In a recent paper, Primich and Hayami!
discussed the application of a Fabry-Perot
resonator to plasma diagnostics. In par-
ticular, they studied plasma densities that
are uniform in space and that have a plasma
frequency much less than the operating fre-
quency of the microwave system. They also
restrict themselves to plasmas that are
collisionless.

The purpose of this communication is to
study the use of a Fabry-Perot resonator in
diagnostics of a low density but nonuniform
plasma and also to consider the plasma to
have collisions. Such a problem would arise
in determining the plasma parameters in the
wake of a projectile or in various low density
plasma confinement devices.

Consider the resonator shown in Fig. 1
with a plasma slab inserted in it. One can
consider plane waves?? to be propagating in
the resonator, hence the plasma slab may be
considered as a dielectric medium of dielec-
tric constant ep.

(JJZ
ep1=so[1—+—~2”, ] )
w? ~ jw
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Fig. 1—Fabry-Perot plasma diagnostic device.
where w,?=ne?/me is the plasma frequency

and » is the collision frequency. For »<w,
(1) becomes

2 2
Epl’*"«éo[l'—fp‘%-jw””]_ (2)
w

2 w?

Consider now the Fabry-Perot cavity to
be resonated in the absence of any plasma
medium. Finite losses are present resulting
from the reflecting end plates and diffraction,
hence the complex resonant frequency is ex-
pressible as

N
ZQO
where o is the natural resonant frequency
and Qg is the Q of the empty cavity. Intro-
duction of the plasma slab will cause the
resonant frequency to shift by an amount

dw; hence the new complex resonant fre-
quency may be written as

Q= wg [1 + 3)

@ = (w0 - bw) [:14-57(2—1 ) 4)

As the Q's of the Fabry-Perot cavity are very
high, one obtains
Q— Q 8 j 1 1
R UYL DL _] B
wo wg 2 Ql Qo

The fields before and after the introduc-
tion of the plasma slab will be relatively un-
changed as e, =~e, hence the use of the
perturbational concept? is valid which yields

& — Q

T
_fffAV(]AelEolz-l-A,u]Ho]?)dV
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where in general Q, &, and € are complex. At
resonance, the electric and magnetic energies
are equal and the plasma does not alter the
permeability, hence (6), using (2) and (5)
becomes

O — Q

R e L
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Equating the real and the imaginary
parts of (7) results in

2f _ ffwa | Eofray
fo ff

®
qy

and

fff AP
Qo — Qs AV wod ’
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Eqgs. (8) and (9) are the most general re-
sults as they allow for a density variation,
hence also a collision frequency variation,
both in the transverse and in the longitudinal
directions. One could now perform these in-
tegrations using an assumed spatial distribu-
tion in both the transverse and longitudinal
directions,

As an example, consider a uniform den-
sity plasma slab of infinite cross section
placed in the resonator. One obtains upon
integrating (8) and (9)

2Af AL wy?
T T e o
Qo— 01 AL an
001 L o

Using the measured change in resonant
frequency, (10) may now be solved for the
number density. Using the measured change
in the cavity Q, (11) will yield the collision
frequency. Eq. (10) is identical to (8) of
Primich and Hayami with AN replaced by
—wp?/2w? which is shown later in their text.

Experimental comparison with Langmuir
probe measurements made in a toroidal
octupole plasma confinement device® verify
the above theory. At 10 Gc the resonator
measured a number density of 35X10?
el/cm? as also did the probe.

The parameters Af and fo can be meas-
ured to a greater precision using a dual
mode® cavity. The ratio Af/fo has been
measured as 3X1078 at 35 Gc, hence the
diagnostic capability in this frequency
range would be to measure number densities
from 10% el/cm?® to 104 el/cm3.

The collision frequency relation (9) could
alternatively be derived by considering the
transmission line analog of a resonant cavity,
solving for the attenuation constant which
would depend on the collision frequency
of such a line, relating it to the Q’s of the
filled and unfilled cavities, and finally solving
for the collision frequency.
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Step-Twist Diode Switch

Two X-band diode switches have been
combined with a step-twist waveguide sec-
tion to form a very compact broad-band
step-twist diode switch.

The device shown in Fig. 1 can replace
a step twist in a system when it is necessary
to add a switch to the system.

Fig. 1—Step-twist diode switch.

The step twist consists of equal length
equiangular twisted sections cut quite in-
expensively with a 0.400 inch diameter mill.
The VSWR of the step twist alone is shown
in Fig, 2.
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Fig, 2—Step-twist characteristics.

The diode switch consists of two 1N263
diodes centered in each step. The switching
voltage is delivered to the diodes through
modified BNC connectors. The isolation of
two diode switches is a maximum when they
are about a quarter wavelength apart. These
diodes are a quarter wavelength apart at
10.2 Ge but a capacitive step separates them,
lowering the frequency slightly. From Fig.
3 it can be seen that the isolation is greater
than 40 db from 8.4 Gc to 10.4 Gc peaking
at 9.9 Ge. The insertion loss is less than 3 db
from 9.2 Ge to 10.4 Ge. Although the diodes
used are limited to switching powers below
50 mw, any of the wide selection of higher
power X-band diode switches could be used
in this structure.
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Fig. 3—Frequency dependence of the isolation and
insertion loss of the step-twist diode switch,
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Dielectric Resonators for
Microwave Applications

The purpose of this communication is to
report certain test results recently obtained
with resonators made of single crystal rutile.
Since rutile has a very high dielectric con-
stant and a very low loss factor, microwave
resonators made of rutile have several
desirable characteristics. Compared to
metallic resonators it is possible to reduce
the size of the rutile resonator, which is
especially useful at lower microwave fre-
quencies. The Q factor of rutile resonators is
very high and at room temperature may be
of the order of several thousand, while at
liquid helium temperature it may even reach
105. It can be shown that the ratio of electric
and magnetic field strengths of dielectric
cavity to metallic cavity is proportional to
(E)Y* and (E), respectively. Therefore,
with the same available power, an increase
in field intensity can be obtained. Further-
more, these fields are not confined to the
inside of the rutile resonator but extend
beyond the dielectric surface into free space.
Because of these characteristics rutile reso-
nators are finding useful applications in
traveling-wave masers, in harmonic gen-
erators (in conjunction with varactor di-
odes), in novel RF Hall-effect-devices, and
in experiments with parametric supercon-
ducting devices.
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